Cognitive Interference Channels with Confidential Messages
نویسندگان
چکیده
The cognitive interference channel with confidential messages is studied. Similarly to the classical two-user interference channel, the cognitive interference channel consists of two transmitters whose signals interfere at the two receivers. It is assumed that there is a common message source (message 1) known to both transmitters, and an additional independent message source (message 2) known only to the cognitive transmitter (transmitter 2). The cognitive receiver (receiver 2) needs to decode both messages, while the non-cognitive receiver (receiver 1) should decode only the common message. Furthermore, message 2 is assumed to be a confidential message which needs to be kept as secret as possible from receiver 1, which is viewed as an eavesdropper with regard to message 2. The level of secrecy is measured by the equivocation rate. A single-letter expression for the capacity-equivocation region of the discrete memoryless cognitive interference channel is established and is further explicitly derived for the Gaussian case. Moreover, particularizing the capacity-equivocation region to the case without a secrecy constraint, establishes a new capacity theorem for a class of interference channels, by providing a converse theorem.
منابع مشابه
Polar Coding for the Cognitive Interference Channel with Confidential Messages
In this paper, we propose a low-complexity, secrecy capacity achieving polar coding scheme for the cognitive interference channel with confidential messages (CICC) under the strong secrecy criterion. Existing polar coding schemes for interference channels rely on the use of polar codes for the multiple access channel, the code construction problem of which can be complicated. We show that the w...
متن کاملDiscrete Memoryless Interference and Broadcast Channels with Confidential Messages
Discrete memoryless interference and broadcast channels in which independent confidential messages are sent to two receivers are considered. Confidential messages are transmitted to each receiver with perfect secrecy, as measured by the equivocation at the other receiver. In this paper, we derive inner and outer bounds for the achievable rate regions for these two communication systems.
متن کاملStrong Secrecy for Interference Channels: Achievable Rate Region and Degrees of Freedom
The achievable rate region and degrees of freedom are studied for interference channels with confidential messages under strong secrecy constraints. The problem is studied based on the framework of Han and Verdú’s channel resolvability theory. It is shown that if the random binning rate for securing a confidential message is slightly above the resolution of its corresponding wiretapped channel,...
متن کاملSecure Multiplex Coding Over Interference Channel with Confidential Messages
In this paper, inner and outer bounds on the capacity region of two-user interference channels with two confidential messages have been proposed. By adding secure multiplex coding to the error correction method in [15] which achieves the best achievable capacity region for interference channel up to now, we have shown that the improved secure capacity region compared with [2] now is the whole H...
متن کاملAchievable Secrecy Rate Regions of State Dependent Causal Cognitive Interference Channel
In this paper, the secrecy problem in the state dependent causal cognitive interference channel is studied. The channel state is non-causally known at the cognitive encoder. The message of the cognitive encoder must be kept secret from the primary receiver. We use a coding scheme which is a combination of compress-and-forward strategy with Marton coding, Gel’fand-Pinsker coding and Wyner’s wire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0710.2018 شماره
صفحات -
تاریخ انتشار 2007